M1.C

M2.(a) (i) $128 \mathrm{~V} \checkmark$
(ii) 64 V

CE from (i)
(iii) $V_{m s}=64 / \sqrt{ } 2 \quad \checkmark=45.3 \vee \checkmark$

CE from (ii)
(iv) frequency $=1 / 0.01 \checkmark=100 \checkmark \mathrm{~Hz} \checkmark$
do not accept kHz for unit mark unless correct for candidate value
if use 10 s instead of 10 ms then can score second two marks
(b) horizontal line \checkmark
through $y=45(44-48) x=0 \quad \checkmark$
CE from (a)(iii)+ / - half square straight line must extend to at least to 6.0 ms
(c) connect to y-input \checkmark
adjust / change time base \checkmark
so that each division is 2.0 ms OR 20 ms across screen \checkmark reference to y-gain / sensitivity \checkmark
if inappropriate numbers quoted for y gain then lose last mark

M3.
(a)

(b) (i) the voltage reverse/changes direction/sign \checkmark
this makes the spot move up and down or correct explanation of lack of horizontal movement \checkmark
(ii) length of line $=8$ divisions
peak to peak $=8 \times 0.5=4.0 \mathrm{~V} \sqrt{ }$
(iii) $($ peak $=2.0 \mathrm{~V})$
$r m s=2.0 / \sqrt{ } 2=1.4 \vee \boldsymbol{v}^{\prime}$

M4. B

M5. (a) the square root of the mean of the squares of all the values of the voltage in one cycle (1)
or the equivalent dc/steady/constant voltage that produces the same heating effect/power (1)
(b) (i) peak voltage $=230 \times \sqrt{ } 2$ (1)
peak voltage $=325 \mathrm{~V}$ (or 324 V) (1)
(ii) average power $=230 \times 0.26=60 \mathrm{~W}(1)$
(c)

shape and symmetrical with consistent values of x at $y=0$ and consistent $y_{\text {max }}$ (must be at least one cycle) (1)
appropriate scale y-axis (1)
correct peak values (to within one 2 mm square) (1) correct period (accept 0.02 or 20) (1)

M6. (a) (i) (vertically) downwards (1)
(ii) force F is perpendicular to both B and I [or equivalent correct explanation using Fleming LHR] (1)
magnitude of F changes as size of current changes (1)
force acts in opposite direction when current reverses [or ac gives alternating force] (1)
continual reversal of ac means process is repeated (1)
$\max 3$
(b) appreciation that maximum force corresponds to peak current (1)
peak current $=2.4 \times \sqrt{2}=3.39(\mathrm{~A})(1)$
$F_{\text {max }}\left(=B I_{\mathrm{pk}} L\right)=0.22 \times 3.39 \times 55 \times 10^{-3}(1)\left(=4.10 \times 10^{-2} \mathrm{~N}\right)$
(c) wavelength (λ) of waves $=\left(=\frac{c}{f}\right)=\frac{64}{80}=0.80(\mathrm{~m})(1)$ length of wire is $\lambda / 2$ causing fundamental vibration (1)
[or λ of waves required for fundamental $(=2 \times 0.40)=0.80 \mathrm{~m}(1)$
natural frequency of wire $\left.\left(=\frac{c}{\lambda}\right)=\frac{64}{0.80}=80(\mathrm{~Hz})(1)\right]$
wire resonates (at frequency of ac supply) [or a statement that fundamental frequency (or a natural frequency) of the wire is the same as applied
frequency] (1)

M7. C

M8. (i) 10.0 (V)(1)
(ii) $\quad \mathrm{V}_{\mathrm{ms}}=10.0 / \sqrt{ } 2=7.1(\mathrm{~V})(1)$

1
(iii) time period $=3 \times 2=6(\mathrm{~ms})(1)$
(iv) frequency $=1 / 0.006$ or $1 / 6$ (1) frequency $=167(1)(\mathrm{Hz})$

2
[5]

M9. (a) (i) use of 1.5 cycles (1)
conversion to time eg time for 1.5 cycles $=10 \times 1.5=15 \mathrm{~ms}(1)$ calculation of frequency eg frequency $=1 / 0.010=100 \pm 3 \mathrm{~Hz}(1)$
(ii) peak voltage $=1.5 \times 2(1)=3.0 \mathrm{~V}(1)$
(iii) rms voltage $=3.0 / \sqrt{2}(1)(c e$ from (a) (i))

Page 6

(b) vertical line is formed (1)
of length equal to twice the peak voltage (1)
because trace no longer moves horizontally or spot moves just up and down (1)
$\max 2$

